1,125 research outputs found

    3D/2D Registration of Mapping Catheter Images for Arrhythmia Interventional Assistance

    Full text link
    Radiofrequency (RF) catheter ablation has transformed treatment for tachyarrhythmias and has become first-line therapy for some tachycardias. The precise localization of the arrhythmogenic site and the positioning of the RF catheter over that site are problematic: they can impair the efficiency of the procedure and are time consuming (several hours). Electroanatomic mapping technologies are available that enable the display of the cardiac chambers and the relative position of ablation lesions. However, these are expensive and use custom-made catheters. The proposed methodology makes use of standard catheters and inexpensive technology in order to create a 3D volume of the heart chamber affected by the arrhythmia. Further, we propose a novel method that uses a priori 3D information of the mapping catheter in order to estimate the 3D locations of multiple electrodes across single view C-arm images. The monoplane algorithm is tested for feasibility on computer simulations and initial canine data.Comment: International Journal of Computer Science Issues, IJCSI, Volume 4, Issue 2, pp10-19, September 200

    Innovative Technologies for Medical Education

    Get PDF
    This chapter aims to assess the current practices of anatomy education technology and provides future directions for medical education. It begins by presenting a historical synopsis of the current paradigms for anatomy learning followed by listing their limitations. Then, it focuses on several innovative educational technologies, which have been introduced over the past years to enhance the learning. These include E-learning, mobile apps, and mixed reality. The chapter concludes by highlighting future directions and addressing the barriers to fully integrating the technologies in the medical curriculum. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise

    The Future of Cardiac Mapping

    Get PDF

    3D reconstruction of coronary arteries from angiographic sequences for interventional assistance

    Get PDF
    Introduction -- Review of literature -- Research hypothesis and objectives -- Methodology -- Results and discussion -- Conclusion and future perspectives

    Interventional 3D Augmented Reality in Orthopedic, Trauma and Vascular Surgery

    Get PDF
    The Medical Education, Training and Computer Assisted Interventions (METRICS) Laboratory aims to integrate novel mixed-reality technologies with application in computer assisted interventions. We showcase two technologies with specific aims at optimizing surgical workflow and minimizing radiation exposure in orthopedic, trauma, and vascular surgeries. The first is an Augmented Reality C-arm fluoroscope, which provides intuitive real-time visualization by accurately overlaying X-ray to video images. The second is a ‘Desired-views’ user interface which resolves the challenges involved in the optimal control of C-arm fluoroscopes for their constant repositioning during surgery by either the interventionalist or the surgical team

    Leveraging machine learning and prescriptive analytics to improve operating room throughput

    Get PDF
    Successful days are defined as days when four cases were completed before 3:45pm, and overtime hours are defined as time spent after 3:45pm. Based on these definitions and the 460 unsuccessful days isolated from the dataset, 465 hours, 22 minutes, and 30 seconds total overtime hours were calculated. To reduce the increasing wait lists for hip and knee surgeries, we aim to verify whether it is possible to add a 5th surgery, to the typical 4 arthroplasty surgery per day schedule, without adding extra overtime hours and cost at our clinical institution. To predict 5th cases, 301 successful days were isolated and used to fit linear regression models for each individual day. After using the models' predictions, it was determined that increasing performance to a 77% success rate can lead to approximately 35 extra cases per year, while performing optimally at a 100% success rate can translate to 56 extra cases per year at no extra cost. Overall, this shows the extent of resources wasted by overtime costs, and the potential for their use in reducing long wait times. Future work can explore optimal staffing procedures to account for these extra cases

    The CAMP Lab Computer Aided Medical Procedures and Augmented Reality

    Get PDF
    Abstract-The CAMP lab is integrated within the Department of Informatics at Technical University of Munich and is considered one of the leading groups concerned with medical augmented reality, computer assisted interventions, as well as non-medical related computer vision. In this short paper, we give an outline of the history of the lab and present a summary of some of our past and current activities relevant to augmented and virtual reality in computer assisted interventions and surgeries. References to published work in major journals and conferences allow the reader to get access to more detailed information on each subject. It was not possible to cover all aspects of our research within this paper, but we hope to provide an overview on some of these within this short paper. The readers are also invited to visit our web-site at http://campar.in.tum.de to get more information on aspects of our work. Applications for PhD and PostDoc positions can be made through the form a

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV
    corecore